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1 Introduction
The notion of input-to-state stability (ISS) has been proven powerful in stability analysis
and control synthesis for dynamical systems. This notion characterizes the effects of
external inputs on the stability of control systems. In the stability notion, if we generalize
the Euclidean norm to functions in Gamma, we will. On the other hand, the notion of
stability in terms of two measures allows us to study Lyapunov stability, partial stability,
orbit stability, and stability of the invariant set for nonlinear systems simultaneously. But
the literature lacks a formal definition and criteria for ISS in terms of two measures.
Therefore, we fill in the gap in the literature by developing ISS in terms of two measures.
For the convenience of real-life applications, we extend ISS in terms of two measures to
systems on time scale.

2 Lyapunov analysis of nonlinear systems

2.1 Premilinaries
Definition 2.1.1. Given two metric spaces pX ,dX q,pY,dY q, a function f : X Ñ Y is called
Lipschitz if there exists a real constant K ě 0 such that, for all x1 and x2 in X ,

dY p f px1q ´ f px2qq ď KdX px1,x2q (1)

f is called locally Lipschitz if for every x P X , there exists a neighbourhood U of x such
that f restricted to U is Lipschitz.

Definition 2.1.2. A function f is positive definite if and only if f p0q “ 0 and f pxq ą 0 for
x ‰ 0

Definition 2.1.3. A function f is positive semidefinite if and only if f p0q “ 0 and f pxq ě 0
for x ‰ 0

Definition 2.1.4. A function f is negative definite if and only if f p0q “ 0 and ´ f pxq ą 0
for x ‰ 0

Definition 2.1.5. A function f is negative semidefinite if and only if f p0q “ 0 and ´ f pxq ě

0 for x ‰ 0

Definition 2.1.6. A continous function α : r0,aq Ñ r0,8q is said to belong to class K if
and only if it is strictly increasing and αp0q “ 0. It is said to belong to class K8 if a “ 8

and αprq Ñ 8 as r Ñ 8.

Definition 2.1.7. A contuinous function α : r0,aq Ñ r0,8q is said to belong to class L if
and only if it is strictly decreasing and limxÑ8 αpxq “ 0.

Definition 2.1.8. A continuous function β : r0,8q ˆ r0,8q Ñ r0,8q is said to belong to
class K L if and only if

• for each fixed s, the mapping β pr,sq belongs to class K with respect to r



2.1 Premilinaries 2

• for each fixed r, the mapping β pr,sq belongs to class L with respect to s

Definition 2.1.9. A continuous function β : r0,8q ˆ r0,8q Ñ r0,8q is said to belong to
class C K if and only if for each fixed r, the mapping β pr,sq belongs to class K with
respect to s.

Lemma 2.1.1. • The composition of class K functions belongs to class K

• The composition of class K8 functions belongs to class K8

• σpr,sq “ α2pβ pα1prqq,sq belongs to class K L , where α1,α2 belongs to class K ,
β belongs to class K L .

Lemma 2.1.2. Let V : D Ñ R be a continuous positive definite function defined on a
domain D Ă Rn that contains the origin. Let Br Ă D for some r ą 0. Then, there exist class
K functions α1,α2 defined on r0,rs, such that

α1p∥x∥q ď V pxq ď α2p∥x∥q (2)

for all x P Br. If D “ Rn, the functions α1,α2 will be defined on r0,8q and the forgoing
inequality will hold for all x P Rn. Moreover, if V pxq is radially unbounded, then α1,α2
can be chosen to belong to class K8.

Proof. Consider
φpsq “ in fsď∥x∥ďrV pxq (3)

for 0 ď s ď r.
ψpsq “ sup∥x∥ďsV pxq (4)

for 0 ď s ď r. φp¨q and ψp¨q are both continuous, positive definite and nondecreasing.
Moreover,

φp∥x∥q ď V pxq ď ψp∥x∥q (5)

There exists class K functions α1,α2 such that

α1p∥x∥q ď φp∥x∥q,ψp∥x∥q ď α2p∥x∥q (6)

Hence, α1p∥x∥q ď V pxq ď α2p∥x∥q. If D “ Rn, let

φpsq “ in fsď∥x∥V pxq,ψpsq “ sup∥x∥ďsV pxq (7)

for all x P Rn, and the rest of the proof is the same. If V pxq is radially unbounded, then
φpsq,ψpsq Ñ 8 as s Ñ 8, which means α1,α2 needs to be chosen in class K8.

Lemma 2.1.3. Consider the scalar differential equation

9u “ f pt,uq,upt0q “ u0 (8)

where f pt,uq is continuous in t and locally Lipschitz in u, for all t ě 0 and all u P J Ă R.
Let rt0,T q (T could be infinite) be the maximal interval of existence of the solution uptq,
and suppose uptq P J for all t P rt0,T q. Let vptq be a continuous function whose upper
right-hand derivative D`vptq satisfies the differential inequality

D`vptq ď f pt,vptqq,vpt0q ď u0 (9)

with vptq P J for all t P rt0,T q. Then, vptq ď uptq for all t P rt0,T q.
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Proof. Consider the perturbed differential equation

9z “ f pt,zq ` λ ,zpt0q “ u0 (10)

where λ ą 0. On any compact interval rt0, t0s, for any ε ą 0, there is δ ą 0 such that if
λ ă δ , then Eq.10 has a unique solution zpt,λ q defined on rt0, t1s and |zpt,λ q ´ uptq| ă

ε,@t P rt0, t1s.
Claim: vptq ď zpt,λ q,@t P rt0, t1s

Proof: For the sake of contradiction, suppose there exists a,b P rt0, t1s such that vpaq “

zpa,λ q and vptq ą zpt,λ q,@t P pa,bs (vptq ą zpt,λ q over an interval because of the continuity
of v). Therefore, we have

vptq ´ vpaq ą zpt,λ q ´ zpa,λ q,@t P pa,bs (11)

which means
vpa ` δ q ´ vpaq

δ
ą

zpa ` δ ,λ q ´ zpa,λ q

δ
,@t P pa,bs (12)

for all δ P p0,b ´ as. By the property of limit supremum,

limsup
δÑ0

vpa ` δ q ´ vpaq

δ
ą limsup

δÑ0

zpa ` δ ,λ q ´ zpa,λ q

δ
,@t P pa,bs (13)

which means
D`vpaq ą 9zpa,λ q “ f pt,aq ` λ ,@t P pa,bs (14)

which contradicts the assumption that D`vpaq ą 9zpa,λ q ă f pt,aq,@t P rt0,T q.
Claim: vptq ď uptq,@t P rt0, t1s

Proof: For the sake of contradiction, suppose there exists a P pt0, t1s such that vpaq ą upaq.
Take ε “ pvpaq ´ upaqq{2, choose λ such that |zpt,λ q ´ uptq| ă ε . Hence vpaq ´ zpa,λ q “

vpaq´upaq`upaq´ zpa,λ q ě 2ε ´ε “ ε , which means vpaq ě zpa,λ q`ε ą zpa,λ q. This
contradicts the first claim above.
Hence, we showed that vptq ď uptq over any compact set rt0, t1s. We want to show it is
true for all t ě t0. For the sake of contradiction, suppose T is the first time that it violates
vptq ď uptq, meaning vpT q “ upT q by continuity of v. Since vptq ď uptq over any compact
set, meaning the inequality is satisfied over rT,T ` ∆s for some ∆ ą 0, which means the
first time violating vptq ď uptq has to be after T ` ∆, which is a contradiction.

Note that Lemma.2.1.3 has a Dini derivative version, which is important when generalizing
the input-to-state stability in terms of two measures.

Lemma 2.1.4. Consider the scalar autonomous differential equation

9y “ ´αpyq,ypt0q “ y0 (15)

where α is a locally Lipschitz class K function defined on r0,aq. For all 0 ď y0 ď a, this
equation has a unique solution yptq defined for all t ě t0. ( Since 9y ď 0 and ypt0q P r0,as,
yptq P r0,as as long as y0 P r0,as). Moreover,

yptq “ σpy0, t ´ t0q (16)

where σ is a class K L function defined on r0,aq ˆ r0,8q.
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Proof. Since α is locally Lipschitz, the differential equation has a unique solution for
every initial state y0 ě 0. Since the differential equation is separable, when y0 ‰ 0:

´

ż y

y0

dx
αpxq

“

ż t

t0
dτ “ t ´ t0 (17)

Let 0 ě b ă a be any positive number less than a, and define

ηpyq “ ´

ż y

b

dx
αpxq

(18)

Therefore, we have
ηpyq ´ ηpy0q “ t ´ t0 (19)

yptq “ η
´1

pηpy0q ` t ´ t0q (20)

If y0 “ 0, yptq “ 0, hence

yptq “ σpr,sq “

#

η´1pηprq ` sq, r ą 0
0, r “ 0

(21)

STS σpr,sq is in class K L . Note that ηpyq is continuous and strictly decreasing, η´1 is
continuous. Note that as t Ñ 8, yptq Ñ 0. This can only happen asymptotically, since if
yptq hits zero in finite time, then it would result2 in a zero derivative at that point, which
would violate the uniqueness of the solution. Hence, limxÑ0 ηpxq “ 8, limxÑ8 η´1pxq “ 0.
Therefore, σpr,sq is continuous.

B

Br
σpr,sq “

αpσpr,sqq

αprq
ą 0 (22)

B

Bs
σpr,sq “ ´αpσpr,sqq ă 0 (23)

Hence, σpr,sq is strictly increasing along r and strictly decreasing along s. Hence, σpr,sq

belongs to class K L .

2.2 Autonomous system
Suppose f : D Ñ Rn,D Ă Rn is locally Lipschitz, consider the autonomous system

9x “ f pxq (24)

where f is not t dependent, meaning the solution only depends on t ´t0 where t0 is the initial
condition. All equilibrium points can be shifted to the origin with simple transformation
y “ x ´ x̄ where x̄ is the equilibrium. Hence, WLOG we assume the equilibrium is x “ 0.

Definition 2.2.1. The equilibrium point x “ 0 of Eq.24 is

• (Lyapunov) stable if @ ε ą 0,D δ pεq ą 0xp0q ď δ , ∥xptq∥ ď ε, @t ě 0.
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• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that ∥xp0q∥ ď δ ùñ

limtÑ8 xptq “ 0

Lyapunov stability only requires that as long as the solution starts close enough to the
equilibrium, it will stay close. However, the asymptotic stability requires the solution to
converge to the equilibrium.

Theorem 2.2.1. Suppose x “ 0 is the equilibrium of Eq.24, the equilibrium is stable if there
exists a positive definite function V : D Ñ R,D Ă Rn such that 9V is negative semidefinite.
And it is asymptotically stable if 9V is negative definite.

Proof. Given ε ą 0. Consider r P p0,εs, Br “ tx|∥x∥ ď ru Ă D. Take a set in the interior
of Br as follows:
Let α be the minimum value of V on the boundary of Br: α “ min∥x∥“r V pxq. Take
β P p0,αq. Consider the set

Ωβ “ tx P Br|V pxq ď βu (25)

Ωβ is guaranteed to be in the interior of Br by the definition of α . Note that all trajectories
started in Ωβ will stay in there because 9V pxq ă 0.
Since Ωβ is closed(complement is open by continuity of V ) and bounded (since it is the
interior of Br), it is compact, hence every solution started in Ωβ is unique.
By the continuity of V pxq and V p0q “ 0, there exists δ ą 0 such that if ∥x ´ 0∥ ă δ ,
V pxq ´V p0q “ V pxq ă β . From here we deduce that if ∥xp0q∥ ď δ , then ∥xptq∥ P Ωβ Ă Br,
meaning ∥xptq∥ ă r ď ε , which shows the equilibrium is stable.
Now suppose also 9V is negative definite. We need to show the trajectory converges to the
equilibrium, meaning for any a ą 0, there exists T ą 0 such that if t ě T , then ∥x∥ ď a.
Since from the proof above, for any Ba, we can construct Ωb Ă Ba, which means STS
V pxq Ñ 0. Since V pxq is monotonically decreasing and bounded from below by zero,
we can conclude that V pxq Ñ c where c ě 0. For the sake of contradiction, suppose
c ą 0. By continuity of V pxq, there is d ą 0 such that Bd Ă Ωc. Since V pxq approaches
c ą 0 from above, the trajectory lies outside Ωc hence outside Bd for all t ě 0. Let
´γ “ maxdď∥x∥ďr 9V pxq, which exists because the continuous function 9V pxq has a maximum
over the compact set td ď ∥x∥ ď ru. Since 9V is negative definite, ´γ ă 0. It follows that

V pxptqq “ V pxp0qq `

ż t

0
9V pxpτqqdτ ď V pxp0qq ´ γt (26)

The right-hand side can eventually become negative as t increases, which contradicts the
fact that c ą 0. Hence, c “ 0, which shows the equilibrium is asymptotically stable.

The Lyapunov function V : D Ñ R gives a sufficient condition for determining if the
equilibrium is stable or not. Meaning if such a function doesn’t exist, we cannot say
the equilibrium is unstable. Also, since this is an existence theorem, finding the “right"
Lyapunov function is crucial.
A question to ask about asymptotic stability is how far away from the equilibrium the
system can start to still converge to the equilibrium, which is what is the region of attraction.
Next, we study the case when the region of attraction is the whole space, which is globally
asymptotically stable.
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Theorem 2.2.2. Let x “ 0 be an equilibrium point for Eq.24. Let V : Rn Ñ R be a
continuously differentiable function such that

V p0q “ 0,and V pxq ą 0 @x ‰ 0 (27)

∥x∥ Ñ 8 ùñ V pxq Ñ 8 (28)
9V pxq ă 0,@x ‰ 0 (29)

Then x “ 0 is globally asymptotically stable.

Proof. Given any p P Rn, let c “ V ppq. The second condition implies for any c ą 0, there
exists r ą 0 such that V pxq ą c whenever ∥x∥ ą r. Following the proof of Theorem. 2.2.1,
consider Ωc, which in this case Ωc Ă Br, which implies Ωc is bounded. The rest of the
proof is similar to the proof of Theorem.2.2.1.

The globally asymptotically stable equilibrium has to be the unique equilibrium. Suppose
there is another equilibrium x̄, the trajectories stars at x̄ will stay at x̄ and not converge to
the origin, which contradicts the fact that the stability of origin is global. Hence, systems
with multiple equilibria must not have global stability.

2.3 Nonautonomous system
Suppose f : r0,8q ˆ D Ñ Rn and D Ă Rn containing x “ 0 is piecewise continuous in t
and locally Lipschitz in x. Consider the nonautonomous system

9x “ f pt,xq (30)

Different from an autonomous system, the solution of a nonautonomous system depends
on both t and t0. An equilibrium at the origin could be a translation of a non-zero solution
to the system like what we did in the last section, or a translation of a non-zero equilibrium
point. Therefore, WLOG we assume the equilibrium is at the origin. The definition of
stability is different due to the t dependence in the system. The main difference lies
in the notion of “uniformity" related to the t dependence when the chosen constant is
time-independent.

Definition 2.3.1. The equilibrium point x “ 0 of Eq.30 is

• stable if @ ε ą 0,D δ pt0,εq ą 0

∥xpt0q∥ ă δ ùñ ∥xptq∥ ă ε,@ t ě t0 ě 0 (31)

• uniformly stable if @ε ą 0,D δ pεq ą 0 Eq.31issatis f ied.

• unstable if not stable

• asymptotically stable if it is stable and there is a constant c “ cpt0q ą 0 such that xptq Ñ 0
as t Ñ 8,@∥xpt0q∥ ă c.

• uniformly asymptotically stable if it is uniformly stable and there is a constant c ą

0(independent of t0) such that xptq Ñ 0 as t Ñ 8,@∥xpt0q∥ ă c.
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• globally uniformly asymptotically stable if it is uniformly stable, δ pεq can be chosen
to satisfy limεÑ8 δ pεq “ 8, and for each pair of positive numbers η and c there is
T “ T pη ,cq ą 0 such that

∥xptq∥ ă η ,@t ě t0 ` T pη ,cq,@∥xpt0q∥ ă c (32)

There are lemmas that establish more applicable definitions for uniform stability using the
properties of class K and class K L functions.

Lemma 2.3.1. The equilibrium x=0 of Eq.30 is:

• uniformly stable if and only if there exists a class K function α and a constant c ą 0
(independent of t0) such that

∥xptq∥ ď αp∥xpt0q∥q (33)

@t ě t0 ě 0,@∥xpt0q∥ ă c

• uniformly asymptotically stable if and only if there exists a class K L function β

and a constant c ą 0 (independent of t0) such that

∥xptq∥ ď β p∥xpt0q∥ , t ´ t0q (34)

@t ě t0 ě 0,@∥xpt0q∥ ă c

• globally uniformly asymptotically stable if and only if Eq.34 is satisfies for any xpt0q.

Next, we extend Lyapunov’s theory for autonomous systems to nonautonomous systems.

Theorem 2.3.1. (uniform stability) If there exists x=0 be an equilibrium for Eq.30. Sup-
pose D Ă Rn is a domain containing x “ 0. Let V : r0,8q ˆ D Ñ R be a continuously
differentiable function such that

W1pxq ď V pt,xq ď W2pxq (35)

BV
Bt

`
BV
Bx

f pt,xq ď 0 (derivative along the trajectory of Eq.30) (36)

@t ě 0,@x P D, where W1pxq,W2pxq are continuous positive definite functions on D. THEN,
x “ 0 is uniformly stable.

Note that V pt,xq that satisfies Eq.35 has to be positive definite, which is analogous to the
requirement of V being positive definite in the autonomous case. Eq.36 is the same as
requiring a negative semidefinite derivative of V in the autonomous case, but now the path
that we are taking derivative along is time dependent.

Proof. The proof consists of two parts: 1. show there exists c ą 0 such that the so-
lution started in Bc remains in Bc. This can be shown using the same idea of proof
of Theorem.2.2.1 and Eq.35. 2. show there exists class K function α such that
@∥xpt0q∥ ď c,∥xptq∥ ď αp∥xpt0q∥q by making use to Eq.36 and Lemma.2.1.2. Therefore,
by Lemma.2.3.1, the equilibrium is uniformly stable.
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Consider Br Ă D, and constant c which is less than the minimum of W1 evaluated at the
boundary of Br: c ă min∥x∥“rW1pxq, choosing such c is to make sure the following sets
are interior of Br. Consider ΩW1 “ tx P Br|W1pxq ď cu,Ωt,c “ tx P Br|V pt,xq ď cu,ΩW2 “

tx P Br|W2pxq ď cu. We have ΩW2 Ă ΩWt,c Ă ΩW1 Ă Br Ă D. Since the derivative of V pt,xq

along the trajectory of Eq.30 is nonpositive, solutions started in ΩW2 will stay in ΩWt,c

hence in ΩW1 . Since Lemma.2.1.2 only applied to xptq that’s within a closed ball, the
purpose of showing this boundedness result is to make sure Lemma.2.1.2 can be applied to
xptq,@t ě t0. To show Lemma.2.3.1, STS to bound ∥xptq∥ above with a class K function.
By Lemma.2.1.2, there exists class K functions α1,α2 such that

α1p∥x∥q ď V pt,xq ď α2p∥x∥q (37)

Using the fact that V pt,xq is decreasing along the trajectory of Eq.30 and applying both
sides by α

´1
1 , we obtain:

∥xptq∥ ď α
´1
1 pV pt,xptqqq ď α

´1
1 pV pt0,xpt0qqq ď α

´1
1 pα2p∥xpt0q∥qq (38)

Since the composition of class K function is still of class K , Lemma.2.3.1 shows the
equilibrium is uniformly stable.

Theorem 2.3.2. (uniform asymptotic stability) Let x=0 be an equilibrium for Eq.30.
Suppose D Ă Rn is a domain containing x “ 0. If there exists V : r0,8q ˆ D Ñ R be a
continuously differentiable function such that

W1pxq ď V pt,xq ď W2pxq (39)

BV
Bt

`
BV
Bx

f pt,xq ď ´W3pxq (40)

@t ě 0,@x P D, where W1pxq,W2pxq,W3pxq are continuous positive definite functions on D.
THEN the equilibrium is uniformly asymptotically stable. If D “ Rn and W1pxq are radially
unbounded, then the equilibrium is globally asymptotically stable.

Note that the constraint on 9V pt,xq is tighter compared with Theorem.2.3.1, which is analo-
gous to requiring a negative definite derivative in the autonomous case. In Theorem.2.3.1,
the derivative is allowed to be zero other than t0u, but now the derivative has to be negative
on D{t0u.

Proof. The proof consists of two parts: 1. boundedness argument making sure
Lemma.2.1.2 is applicable. 2. Using Lemma.2.1.2, construct a class K L function
that satisfies Lemma.2.3.1.
Choose r ą 0, c ą 0 such that Br P D, c ă min∥x∥“rW1pxq. Consider ΩW1 “ tx P Br|W1pxq ď

cu,Ωt,c “ tx P Br|V pt,xq ď cu,ΩW2 “ tx P Br|W2pxq ď cu. By Eq.39, we have ΩW2 Ă

ΩWt,c Ă ΩW1 Ă Br Ă D. Since the derivative of V pt,xq along the trajectory of Eq.30 is
negative, solutions started in ΩW2 will stay in ΩW1 Ă Br. Therefore, there exists Bδ Ă ΩW2

such that if ∥xpt0q∥ P Bδ , ∥xptq∥ P Br, which allows us to apply Lemma.2.1.2 to xptq,@t ě t0.
By Lemma.2.1.2, there exists class K functions α1,α2,α3 such that

9V pt,xq ď ´W3pxq ď ´α3p∥x∥q (41)
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and
α1p∥x∥q ď V pt,xq ď α2p∥x∥q (42)

By Eq.42, α
´1
2 pV q ď ∥x∥ ðñ α3pα

´1
2 pV qq ď α3p∥x∥q ðñ ´α3p∥x∥q ď ´α3pα

´1
2 pV qq.

Therefore by Eq.41
9V pt,xq ď ´α3pα

´1
2 pV qq (43)

which is a differential inequality. Note that α “ α3 ˝ α
´1
2 is class K defined on

r0,rs. If α is not locally Lipschitz, there exists a locally Lipschitz function β such
that β ď α . Hence, WLOG, we can assume α to be locally Lipschitz. Consider the differ-
ential equation based on Eq.43: 9y “ ´αpyq,ypt0q “ V pt0,xpt0qq ą 0. By Lemma.2.1.3,
we have V pt,xptqq ď yptq,@t ě t0. By Lemma.2.1.4, there exists class K L func-
tion σpr,sq defined on r0,rs ˆ r0,8q such that yptq “ σpV pt0,xpt0qq, t ´ t0q. Hence,
V pt,xptqq ď σpV pt0,xpt0qq, t ´ t0q,@V pt0,xpt0qq P r0,cs. Since by Eq.42,

∥x∥ ď α
´1
1 pV pt,xptqqq ď α

´1
1 pσpV pt0,xpt0qq, t ´ t0qq ď α

´1
1 pσpα2p∥xpt0q∥q, t ´ t0qq (44)

By Lemmq.2.1.1, α
´1
1 pσpα2p¨q, ¨qq is a class K L function. By Lemma.2.3.1, the equilib-

rium is uniformly asymptotically stable.
When D “ Rn, the condition of W1 being radially unbounded is needed to make sure the
constant c ă min∥x∥“rW1 in the proof can be chosen arbitrarily large so that trajectory
arbitrarily far away from the equilibrium can be bounded, then approach zero.

2.4 Boundedness
Before studying systems with “parameters", an important notion is to understand the
boundedness of trajectories. For nonautonomous systems:

Definition 2.4.1. The solution of Eq.30 are

• uniformly bounded if there exists a constant c ą 0(independent of t0) and for every
a P p0,cq, there is β “ β paq ą 0(independent of t0) such that ∥xpt0q∥ ď a ùñ

∥xptq∥ ď β ,@t ě t0.

• globally uniformly bounded if the above inequality holds for any large a

• uniformly ultimately bounded with ultimate bound b if there exist positive constants
b,c(independent of t0 ě 0), and for every a P p0,cq, there is T “ T pa,bq(independent
of t0) such that ∥xpt0q∥ ď a ùñ ∥xptq∥ ď b,@t ě t0 ` T .

• globally uniformly ultimately bounded if the above inequality holds for arbitrarily
large a.

Boundedness is “weaker" compared with ultimate boundedness, because the bound it
chose is universal (t ě t0), while the bound in ultimate boundedness is only satisfied if let
the system progress for long enough (t ě t0 ` T ), to capture the variation in the trajectory.
For autonomous systems, drop uniformly.
The definitions of boundedness and stability are different. In the definition of stability,
given a desired distance away from the equilibrium, one can find where to start the system.
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In the definition of boundedness, given an allowed range of the norm of the starting point,
one can find the distance from the origin.
Boundedness does not imply stability, and stability does not imply boundedness, they are
two different aspects of a dynamical system.
Here is a theorem about showing boundedness we will use in the proof stability:

Theorem 2.4.1. Let D Ă Rn be a domain that containss the origin and V : r0,8qˆD Ñ R
be a continously differentiable function such that

α1p∥x∥q ď V pt,xq ď α2p∥x∥q (45)

BV
Bt

`
BV
Bx

f pt,xq ď ´W3pxq,@∥x∥ ě µ ą 0 (46)

@t ě 0,@x P D, where α1,α2 are class K functions and W3pxq is a continuous positive
definite function. Take r ą 0 such that Br Ă D and suppose that µ ă α

´1
2 pα1prqq. Then,

there exists a class K L function β and for every initial state xpt0q, satisfying ∥xpt0q∥ ď

α
´1
2 pα1prqq, there is T ě 0(dependent on xpt0q and µ) such that the solution of Eq.30

satisfies
∥xptq∥ ď β p∥xptq∥ , t ´ t0q,@t0 ď t ď t0 ` T (47)

∥xptq∥ ď α
´1
1 pα2pµqq,@t ě t0 ` T (48)

Moreover, if D “ Rn and α1 belongs to class K8, then Eq.47, 48 holds for any initial state
xpt0q with no restriction on how large µ is.

Note that if µ “ 0, Theorem.2.4.1 is equivalent to Theorem.2.3.2. The theorem requires a
less strict condition where Eq.48 is only needed outside a radius µ , but the result shows
the solution is still bounded even after a long enough time.

Proof. Strategy: the proof is the reverse engineer of Pages 169-172[3]. We construct
two regions: one is the region that behaves like stability, and another is the region that’s
ultimately bounded. T turns out to be the finite time that all solutions enter the ultimately
bounded region.
Let η “ α2pµq,ρ “ α1prq. Since µ ă α

´1
2 pα1prqq, η ă ρ . Consider

Ωt,η “ tx P Br|V pt,xq ď ηu (49)

Ωt,ρ “ tx P Br|V pt,xq ď ρu (50)

Since α1p∥x∥q ď V pt,xq and V pt,xq ď ρ implies ∥x∥ ď r, Ωt,ρ Ă Br. Since V pt,xq ď

α2p∥x∥q and ∥x∥ ď µ implies V pt,xq ď α2pµq, Bµ Ă Ωt,η . Hence:

Bµ Ă Ωt,η Ă Ωt,ρ Ă Br (51)

Since for ∥x∥ ě µ , 9V ă 0. Since the boundary of Ωt,η ,Ωt,ρ are outside Bµ , all trajectories
started in Ωt,η or Ωt,ρ will not leave since 9V is negative on the boundary. Since ∥xpt0q∥ ď

α
´1
2 pρq and V pt0,xpt0qq ď α2p∥xpt0q∥q, V pt0,xpt0qq ď ρ . Hence in this case all t0 satisfies

xpt0q P Ωt,ρ .
Consider ω “ Ωt,ρ ´ Ωt,η . W3 has a minimum k on ω because W3 is continous and Ω is
compact. Hence, 9V pt,xq ď ´W3 ď ´k, which means V pt,xptqq ď V pt0,xpt0qq ´ kpt ´ t0q ď
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ρ ´ kpt ´ t0q. Hence, xptq enters Ωt,η between rt0, t0 ` pρ ´ ηq{ks, all solutions started in
Ωt,ρ will enter Ωt,η in finite amount of time. Let T “ pρ ´ ηq{k.
When 0z ď t0 ď t0 ` T , xptq P Ωt,η , α1p∥x∥q ď V pt,xptqq ď η “ α2pµq, hence ∥xptq∥ ď

α
´1
1 pα2pµqq. When t0 ě t0 ` T , xptq P Ωt,ρ , since the solutions are bounded, follows the

exact same proof of Theorem.2.3.2, we can show there exists a class K L function σ

such that
V pt,xptqq ď σpV pt0,xpt0qq, t ´ t0q,@t P rt0, t0 ` T s (52)

If D “ Rn, ρ can be chosen arbitrarily large, mea

2.5 Input-to-State Stability (ISS)
We add some parameters determined by the input function to the nonautonomous system.
Consider the system

9x “ f pt,x,uq (53)

Suppose f : r0,8q ˆRn ˆRm Ñ Rn is piecewise continuous in t and locally Lipschitz
in x and u. The input function uptq is a piecewise continuous, bounded function of t for
all t ě 0. We can view Eq,53 as a perturbation of the unforced system (when u “ 0).
For instance when f is Lipschitz in the following way: ∥ f pt,x,uq ´ f pt,x,0q∥ ď L∥u∥,
this gives

∥∥ 9V ´ 9V0
∥∥ ď L∥u∥

∥∥∥BV
Bx

∥∥∥ where V0 comes from the unforced system. Since u

is bounded, it is possible that 9V is negative outside a radius of µ , where µ depends on
sup∥u∥.
If 9V ă 0 outside a ball of radius µ , we can apply Theorem.2.4.1, where ∥xptq∥ is bounded
by a class K L function β p∥xpt0q∥ , t ´ t0q over rt0, t0 ` T s and by a class K function
α

´1
1 pα2pµqq for t ě t0 ` T , which means

∥xptq∥ ď β p∥xpt0q∥ , t ´ t0q ` α
´1
1 pα2pµqq,@t ě t0 (54)

Therefore, we are motivated to present the definition of input-to-state stability, and the
Lyapunov-like theorem that gives sufficient conditions for input-to-state stability.

Definition 2.5.1. The system Eq.53 is said to be input-to-state stable if there exists a class
K L function β and a class K function γ such that for any initial state xpt0q and any
bounded input uptq, the solution xptq exists for all t ě t0 and satisfies

∥xptq∥ ď β p∥xpt0q∥ , t ´ t0q ` γpsupt0ďτďt ∥upτq∥q (55)

Theorem 2.5.1. Let V : r0,8q ˆRn Ñ R be a continously differentiable function such that

α1p∥x∥q ď V pt,xq ď α2p∥x∥q (56)

BV
Bt

`
BV
Bx

f pt,xq ď 0 ď ´W3pxq,@∥x∥ ě ρp∥u∥q ą 0 (57)

@pt,x,uq P r0,8q ˆRn Ñ Rm, where α1,α2 are class K8 functions, ρ is a class K
function, and W3pxq is a continuous positive definite function on Rn. Then, the system
Eq.53 is input-to-state stable with γ “ α

´1
1 ˝ α2 ˝ ρ
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Proof. By the global version of the Theorem.2.3.1, we have:

∥xptq∥ ď β p∥xpt0q∥ , t ´ t0q ` γpµq (58)

where there’s no restriction on how large µ ą 0 should be, hence we take µ “

supτět0 ∥upτq∥ ,@t ě t0. Since tptq depends only on upτq for t0 ď τ ď t, the supremum
on the right-hand side of Eq.58 can be taken over rt0, ts, which yields the definition of
input-to-state stability.

Lemma 2.5.1. Suppose f pt,x,uq is continuously differentiable and globally Lipschitz in
px,uq, uniformly in t. If the unforced system of Eq.53 has a globally exponentially stable
equilibrium point at the origin x “ 0, then Eq.53 is input-to-state stable.

3 Stability in terms of two measures
Here we introduce a generalization of the stability analysis, where the distance from the
equilibrium of the initial time and final time are measured with two different “functions",
for instance, it can be Euclidean 2-norm as before, or something more general. This
generalization enables us to unify a variety of stability notions. With this generalization,
all the inequalities such as Eq.35, Eq.36 need to be generalized. This section is based on
[5].
Consider the nonautonomous system Eq.30. We define two special sets of “measures" we
will use

Definition 3.0.1. Γ “ tcontinuous h : R` ˆR| infpt,xq hpt,xq “ 0u

Γ0 “ th P Γ| infx hpt,xq “ 0 for each t P R`u

Definition 3.0.2. Suppose h,h0 P Γ.

(i) h0 is finer than h if there exists a ρ ą 0 and a function φ P K such that h0pt,xq ă ρ

implies hpt,xq ď φpt,h0pt,xqq.

(ii) h0 is uniformly finer than h if in (i) φ is independent of t.

(iii) h0 is asymptotically finer than h if there exists a ρ ą 0 and a function φ P K L such
that h0pt,xq ă ρ implies hpt,xq ď φph0pt,xq, tq.

The definition of stability is adjusted using two measures by replacing 2-norm with
functions in Γ.

Definition 3.0.3. Suppose h,h0 P Γ. The dynamical system Eq.30 is

(S1) ph,h0q´equi-stable if @ ε ą 0, t0 P R`, D δ pt0,εq ą 0 that is continuous in t0 such
that for all t ě t0, h0pt0,xpt0qq ă δ implies hpt,xptqq ă ε .

(S2) ph0,hq´uniformly stable if δ in S1 is independent of time.

(S3) ph0,hq´equi-attractive if @ ε ą 0, t0 P R`, D δ0pt0q and T “ T pt0,εq such that
h0pt0,x0q ă δ0 implies hpt,xptqq ă ε, t ě t0 ` T . (For each pt0,εq P R` ˆR`, there
exists pδ pt0q,T pt0,εqq P R` ˆR` such that h0pt0,x0q ă δ0 implies hpt,xptqq ă ε, t ě

t0 ` T .)
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(S4) ph0,hq´uniformly attractive if δ0 and T in S3 are independent of time.

(S5) ph0,hq´equi-asymptotically stable if (S1) and (S3) hold simultaneously.

(S6) ph0,hq´uniform-asymptotically stable is (S2) and (S4) holds simultaneously.

(S7) ph0,hq´equi-attractive in the large if @ε ą 0,α ą 0 and t0 PR`, there exists a positive
number T “ T pt0,ε,αq such that h0pt0,x0q ă α implies hpt,xptqq ă ε, t ě t0 ` T .

(S8) ph0,hq´uniformly attractive in the large if the constant T in S7 is independent of t0.

(S9) ph0,hq´unstable if (S1) fails to hold.

Here stability and attractiveness are defined separately. There are systems that are attractive
but not stable, meaning even though the system goes to 0 after a long enough time, it cannot
stay arbitrarily close to the equilibrium for all time. Attractive in the large is stronger than
attractive since in attractive in the large, for any initial state, the solution can go arbitrarily
close to the equilibrium.

Definition 3.0.4. Let continuous function V : R` ˆRn Ñ Rn
`, then V is said to be

(i) h-positive definite if there exists a ρ ą 0 and a function b P K such that bphpt,xqq ď

V pt,xq whenever hpt,xq ă ρ .

(i) h-descrescent if there exists a ρ ą 0 and a function a P K such that V pt,xq ď aphpt,xqq

whenever hpt,xq ă ρ .

(ii) h-weakly-decrescent if there exists a ρ ą 0 and a function a P C K such that V pt,xq ď

apt,hpt,xqq whenever hpt,xq ă ρ .

(iii) h-asymptotically decrescent if there exists a ρ ą 0 and a function a P K L such that
V pt,xq ď aphpt,xq, tq whenever hpt,xq ă ρ .

To broaden the set of systems we work with, we attempt to include more systems that are
not differentiable in the traditional way by generalizing the notion of derivative.

Theorem 3.0.1. We define the sudo-Dini derivatives of the Lyapunov function V pt,xptqq P

CrR` ˆRn,RN
`s:

D`V pt,xptqq “ lim
δÑ0`

sup
1
δ

rV pt ` δ ,x ` δ f pt,xqq ´V pt,xqs (59)

D´V pt,xptqq “ lim
δÑ0´

inf
1
δ

rV pt ` δ ,x ` δ f pt,xqq ´V pt,xqs (60)

Its Dini derivative is defined as

D`V pt,xptqq “ lim
δÑ0`

sup
1
δ

rV pt ` δ ,xpt ` δ qq ´V pt,xqs (61)

D´V pt,xptqq “ lim
δÑ0´

inf
1
δ

rV pt ` δ ,xpt ` δ qq ´V pt,xqs (62)

If V pt,xq is locally Lipschitz in x, then the Dini derivative equals to the sudo-Dinni
derivative.
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Proof. The proof utilizes Taylor’s expansion and the definition of Lipschitzian continuity.

If the Lyapunov function is differentiable, the Dini derivative is the traditional derivative:
D`V pt,xq “ D´V pt,xq “ V 1pt,xq “ Vtpt,xq `Vxpt,xq f pt,xq. Dini derivative works well
with monotonicity as illustrated in the following lemma:

Lemma 3.0.1. Suppose mptq is continuous on pa,bq. Then mptq is nondecreasing (nonin-
creasing) on pa,bq if and only if D`mptq ě 0pď 0q for every t P pa,bq, where

D`mptq “ lim
δÑ0`

sup
1
δ

rmpt ` δ q ´ mptqs (63)

Proof. The forward direction is immediate. Suppose D`mptq ě 0 on pa,bq. For the
sake of contradiction, suppose α,β P pa,bq,α ă β , such that mpαq ą mpβ q. Since m is
continuous, by mean value theorem, there exists µ such that mpαq ą µ ą mpβ q, which
means there is t P rα,β s such that mptq ą µ . Let η “ suptt|mptq ą µ, t P rα,β su. Clearly,
η P pα,β q and mpηq “ µ . For all t P pη ,β q and small enough δ ą 0, mpt ` δ q ď mpηq,
mpt`δ q´mptq

δ
ď

mpηq´mptq
δ

ď 0, meaning mpηq´mptq
δ

ď
mpηq´mptq

η´t ă 0. Therefore, D`mptq ă 0
which is a contradiction.

4 ISS in terms of two measures
After formalizing the Dini derivative and the comparison result of the Dini derivative, the
first step is to generalize Theorem.2.4.1.

Theorem 4.0.1. Suppose h,h0 P Γ. Let D Ă Rn be a domain contains the equilibrium
of interest and V : r0,8q ˆ D Ñ R is continuous, locally Lipschitz in x, and there exists
α1,α2,c P K such that

α1phpt,xptqqq ď V pt,xq ď α2ph0pt,xptqqq (64)

D`V pt,xptqq ď ´cph0pt,xqq, on SC
ph0,µq (65)

Take r ą 0 such that Sph,rq Ă D and suppose that µ ă α
´1
2 pα1prqq. For every initial state

xpt0q, satisfying h0pt0,xpt0qq ď α
´1
2 pα1prqq, D T ě 0(dependent on xpt0q and µ), D β P K L

such that the solution of Eq.30 satisfies

hpt,xptqq ď β ph0pt0,x0q, t ´ t0q,@t0 ď t ď t0 ` T (66)

hpt,xptqq ď α
´1
1 pα2pµqq,@t ě t0 ` T (67)

Moreover, if D “ Rn and α1 P K8, then Eq.66 and Eq.67 hold for any initial state xpt0q

with no restriction on how large µ is.
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Proof. Let ρ “ α1prq,η “ α2pµq, therefore η ă ρ . Consider

Ωt,η “ tx P Sph,rq|V pt,xq ď ηuΩt,ρ “ tx P Sph,rq|V pt,xq ď ρu (68)

Because of Eq.99, we have:

Sph0,µq Ă Ωt,η Ă Sph,α´1
1 pηqq Ă Sph,α´1

1 pρqq “ Sph,rq Ă D (69)

Ωt,η Ă Ωt,ρ Ă Sph,α´1
1 pρqq “ Sph,rq Ă D (70)

which suggests that Ωt,ρ ´ Ωt,η Ă SCph0,µq.
Note that all solutions started in either Ωt,ρ or Ωt,η won’t leave because D`V pt,xq is
negative on the boundaries of both sets. Since α2ph0pt0,xpt0qq ď ρ , we have xpt0q P Ωt0,ρ .
Therefore, we have xptq P Ωt,ρ .@t ě t0. Since D`V pt,xq ď ´cph0pt,xqq on SCph0,µq, and
since c P K , we have D`V pt,xq ď ´cph0pt,xqq ď ´cpµq ” ´K over the set SCph0,µq X

Sph,rq, which contains Ωt,ρ ´ Ωt,η . Therefore, we have V pt,xptqq´V pt0,xpt0qq

t´t0
ď ´K, hence

V pt,xptqq ď V pt0,xpt0qq ´ Kpt ´ t0q ď ρ ´ Kpt ´ t0q, which shows that V pt,xptqq reduces to
η within rt0, t0 `

ρ´η

k s. This tells us that trajectories entered Ωt,ρ will enter Ωt,η at, say,
t0 ` T , which satisfies t0 ` T ď t0 `

ρ´η

k .
For solutions entered Ωt,η , since Ωt,η Ă Sph,α´1

1 pηqq, we have that @t ě t0 `T , hpt,xptqq ď

α
´1
1 pηq “ α

´1
1 pα2pµqq.

For solutions inside Ωt,ρ but outside Ωt,η , aka @t P rt0, t0 ` T s, D`V pt,xptqq ď

´cph0pt,xptqqq ď ´cpα
´1
2 pV pt,xptqqqq ” ´αpV pt,xptqqq, α P K , which corresponds to

the ode 9y “ ´αpyq,ypt0q “ V pt0,xpt0qq. WLOG we can assume α is Lipschitz (if not we
can choose a function bounded below by α that’s Lipschitz). By Lemma.2.1.3, V pt,xptqq ď

yptq,@t ě t0. By Lemma.2.1.4, there exists σ P K L such that yptq “ σpy0, t ´ t0q, which
yields V pt,xptqq ď σpV pt0,xpt0qq, t ´t0q. Therefore, hpt,xq ď α

´1
1 pσpV pt0,xpt0qq, t ´t0qq ď

α1pσpα2ph0pt0,xpt0qq, t ´ t0qqq “ β ph0pt0,x0q, t ´ t0q,@t P rt0, t0 ` T s

If α1 P K8, therefore α2 P K8. If we also know that D “ Rn, for any arbitrary µ and
h0pt0,x0q given, r for Br can be chosen arbitrarily large, making sure that µ ă α

´1
2 pα1prqq

and h0pt0,xpt0qq ď α
´1
2 pα1prqq, and the proof will go exactly the same as above.

Definition 4.0.1. The system Eq.53 is Input-to-state stable in terms of two measures if
Dβ P K L and γ P K such that for any initial state xpt0q and any bounded input uptq, the
solution xptq exists @t ě t0 and satisfies

hpt,xq ď β ph0pt0,x0q, t ´ t0q ` γpsupt0ďτďt ∥upτq∥q (71)

Theorem 4.0.2. Suppose h,h0 P Γ. Let D Ă Rn be a domain contains the equilibrium
of interest and V : r0,8q ˆ D Ñ R is continuous, locally Lipschitz in x, and there exists
α1,α2,c,ρ P K such that

α1phpt,xptqqq ď V pt,xq ď α2ph0pt,xptqqq (72)

D`V pt,xptqq ď ´cph0pt,xqq, on SC
ph0,ρp∥u∥qq (73)

Then, Eq.53 is ph0,hq´input-to-state stable with γ “ α
´1
1 ˝ α2 ˝ ρ .
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Proof. By Theorem,5.0.4, @t ě t0

hpt,xq ď β ph0pt0,xpt0qqq ` α
´1
1 pα2pρp∥u∥qqq (74)

ď β ph0pt0,xpt0qqq ` γpsupτět0 ∥upτq∥q (75)
ď β ph0pt0,xpt0qqq ` γpsuptěτět0 ∥upτq∥q (76)

the last step is because xptq is only related to uptq for t P rt0, ts.

5 ISS of Dynamic systems on time scales in terms of two
measures
For real-life applications, we extend the notion of input-to-state stability to dynamic
systems on time scale.

Theorem 5.0.1. Suppose f : T Ñ R is differentiable and f ∆ ě 0( f ∆ ď 0) on ra,bs Ă T.
Then f is non-decreasing(non-increasing).

Proof. FOSC, suppose α,β P ra,bs such that α ă β , f pαq ą f pβ q. First we consider a
special, case, when rα,β s “ tα,βu, i.e., Suppose α is right scattered β is left-scattered
and α,β are consecutive. By definition of f ∆, f ∆pαq ă 0, which is a contradiction.
Suppose Dµ P rα,β s such that f pαq ą µ ą f pβ q. Let η “ suptt| f ptq ą µu, which means
@t P pη ,β q, f ptq ď µ .

• If η is right-scattered, f pηq ą µ . @t P pη ,β q, f ptq´ f pηq

t´η
ă 0. Since σpηq P pη ,β q,

we have f pσq´ f pηq

µpηq
“ f ∆pηq ă 0, which contradicts f ∆ ě 0.

• If η is right-dense, f pηq “ µ , and the proof goes the same as the usual calculus.
@t P pη ,β q and @δ ą 0 small enough which guarantees f ptq´ f pηq

δ
ă

f ptq´ f pηq

t´η
ď 0,

which implies f pη`δ q´ f pηq

t´η
ă 0, and after taking limit δ Ñ 0` yields f ∆ ă 0 which

is a contradiction.

The converse of Theorem.5 is in [1]. To generalize Theorem.5.0.4 to time scale, we need
to define the Dini derivative in terms of time scale calculus and the comparison result.
Consider the dynamic system

x∆
“ f pt,xq,xpt0q “ x0 (77)

where f P CrdrTˆRn,R`s, and x∆ denotes the derivative of x with respect to t P T.

Definition 5.0.1. [4] Let V P CrdrTˆRn,R`s. Then we define the generalized derivative
of V pt,xq relative to Eq.77 as follows: given ε ą 0, there exists a neighbourhood Npεq of
t P T such that

1
µps, tq

rV pσptq,xpσptqqq ´V ps,xpσptqq ´ µps, tq f pt,xptqqqs ă D`V ∆
pt,xptqq ` ε (78)

for each s P Npεq and s ą t, where µpt,sq “ σptq ´ s and xptq is any solution of Eq.77.
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In case, t P T is right-scattered and V pt,xptqq is continuous at t, we have

D`V pt,xptqq “
1

µ˚ptq
rV pσptq,xpσptq ´V pt,xptqqqqs (79)

where µ˚ptq “ µpt, tq, which is exactly the time scale derivative. When t P T is right-
dense and V pt,xptqq is continuous at t, D`V pt,xptqq is the same as the Dini derivative.
Since we have the monotonicity property of both the time scale derivative (Theorem.5.0.1)
and Dini derivative (Lemma.3.0.1), the monotony property of the derivative defined in
Definition.5.0.1 follows.

Theorem 5.0.2. (Comparison theorem on time scale)[4] Let V P CrTˆRn,R`s, V pt,xq

be locally Lipschitzian in x for each t P T and let

D`V ∆
pt,xptqq ď gpt,V pt,xqq (80)

where g P CrdrTˆR`,R`s, gpt,uqµ˚ptq ` u is nondecreasing in u for each t P T and
rptq “ rpt, t0,u0q is the maximal solution of u∆ “ gpt,uq,upt0q “ u0 ě 0, existing on T.
Then V pt0,x0q ď u0 implies that V pt,xptqq ď rpt, t0,u0q, t P T, t ě t0.

We define special functions on time scales:

Definition 5.0.2. [4] K “ tσ P CrR`,R`s : σpuq is strictly increasing in u and σp0q “ 0u

L “ tσ P CrR`,R`s : σpuq is strictly decreasing in u and limuÑ8 σpuq “ 0u

Γ “ th P CrdrTˆRn,R`s : in fpt,xqhpt,xq “ 0u

C K and K L are defined the same way as before.

Theorem 5.0.3. (substitution rule on time scale)[1] Suppose v : T Ñ R is strictly increas-
ing and T̄ “ vpTq is a time scale. If f : T Ñ R is an rd-continuous function and v is
differentiable with rd-continuous derivative, then for a,b P T,

ż b

a
f ptqv∆

ptq∆t “

ż vpbq

vpaq

f ˝ v´1
psq ∆̄s (81)

Lemma 5.0.1. Consider the differential equation on time scale T:

y∆
“ ´αpyq,ypt0q “ y0 (82)

where α is a locally Lipschitz class K function define on r0,T s. For all 0 ď y0 ď T , this
equation has a unique solution yptq defined for all t ě t0. Moreover,

yptq “ σpy0, t ´ t0q (83)

where σ is a class K L function defined on r0,T s ˆ r0,8s

Proof. Theorem 2.1.1 of [4] gives the local existence of the solution to IVP at all t ě t0.
Since the only solution to u∆ “ ku,k PR,upt0q “ 0 is u “ 0, and since α is locally Lipschitz,
Theorem 2.1.2 of [4] gives the local uniqueness of the solution to the IVP at all t ě t0.
Hence, we have the global existence and uniqueness of solutions to the IVP.
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By integration, we have
ż t

t0
´y∆ 1

αpyq
∆τ “

ż t

t0
∆τ (84)

Since y∆ ă 0 whenever y ą 0 and y0 ě 0, the solution yptq is either strictly decreasing or
constant 0, hence ´ypTq is a time scale. Let v “ ´yptq, f ptq “ αpyptqq, since α P K , by
the rule of substitution on time scale (Theorem.5.0.3), we have:

ż ´yptq

´ypt0q

1
αp´sq

∆̄s “

ż t

t0
∆τ (85)

Let ´T ă b ă 0, define

ηpyq “

ż ´y

b

1
αp´sq

∆̄s (86)

Note that ηpyq ´ ηpy0q “ t ´ t0, therefore we have

yptq “ σpy0, t ´ t0q “ η
´1

pηpy0q ` t ´ t0q (87)

when y0 ą 0, and yptq “ 0 when y0 “ 0. WTS σpy0, t ´ t0q is in class K L . STS 1. ηpyq

is strictly decreasing. 2. limyÑ0 ηpyq “ 8.
1. Let y1 ą y2,´y1,´y2 P r0,T s, ηpy1q ´ ηpy2q “

ş´y1
´y2

1
αp´sq

∆̄s ă 0.
2. Since yptq is strictly decreasing, it definitely approach 0 from above. But it can only
approach 0 asymptotically, not in finite time. It cannot go below zero, since α is not defined
for negative inputs, otherwise, the global existence of the solution would be violated. If
yptq goes to 0 in finite time t 1, then the solution would stay at 0 afterwards due to the 0
derivative, which means around the neighbourhood of t 1 the solution is not unique (there
are at least two: the yptq that goes to 0 in finite time and the trivial solution). Hence, we
have yptq approaches 0 from above asymptotically. From Eq.85, take limit t Ñ 8 on both
sides, since y Ñ 0 as t Ñ 8, we have limyÑ0 ηpyq “ 8.
From 1, since η is strictly decreasing, η´1 is also strictly decreasing. For a fixed t ´ t0,
σpy0, t ´ t0q is increasing since the composition of two strictly decreasing functions is
increasing. For a fixed y0, we have limtÑ8 η´1pηpy0q ` t ´ t0q “ 0 from 2. Hence
σpy0, t ´ t0q P K L as desired.

Theorem 5.0.4. Suppose h,h0 P Γ. Let D Ă Rn be a domain contains the equilibrium
of interest and V : Tˆ D Ñ R` is continuous, locally Lipschitz in x, and there exists
α1,α2,c P K such that

α1phpt,xptqqq ď V pt,xq ď α2ph0pt,xptqqq (88)

D`V ∆
pt,xptqq ď ´cph0pt,xqq, on SC

ph0,µq (89)

Take r ą 0 such that Sph,rq Ă D and suppose that µ ă α
´1
2 pα1prqq.

Moreover, cpα
´1
2 puqqµ˚ptq ` u is nondecreasing in u @t P T and rptq “ rpt, t0,u0q is the

maximal solution of u∆ “ cpα
´1
2 puqq,upt0q “ u0 existing on T. (Making sure Theorem.5.0.2

is applicable)
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Then for every initial state xpt0q, satisfying h0pt0,xpt0qq ď α
´1
2 pα1prqq, D t0 ` T P

T(dependent on xpt0q and µ), D β P K L such that the solution of Eq.77 satisfies

hpt,xptqq ď β ph0pt0,x0q, t ´ t0q,@t0 ď t ď t0 ` T (90)

hpt,xptqq ď α
´1
1 pα2pµqq,@t ě t0 ` T (91)

Moreover, if D “ Rn and α1 P K8, then Eq.90 and Eq.91 hold for any initial state xpt0q

with no restriction on how large µ is.

Proof. Let ρ “ α1prq,η “ α2pµq, therefore η ă ρ . Consider

Ωt,η “ tx P Sph,rq|V pt,xq ď ηu,Ωt,ρ “ tx P Sph,rq|V pt,xq ď ρu (92)

Because of Eq.99, we have:

Sph0,µq Ă Ωt,η Ă Sph,α´1
1 pηqq Ă Sph,α´1

1 pρqq “ Sph,rq Ă D (93)

Ωt,η Ă Ωt,ρ Ă Sph,α´1
1 pρqq “ Sph,rq Ă D (94)

which suggests that Ωt,ρ ´ Ωt,η Ă SCph0,µq.
Note that all solutions started in either Ωt,ρ or Ωt,η won’t leave because D`V ∆pt,xq is
negative on the boundaries of both sets. Since α2ph0pt0,xpt0qq ď ρ , we have xpt0q P Ωt0,ρ .
Moreover, we have xptq P Ωt,ρ .@t ě t0. Therefore, all the trajectories start in Ωt,ρ and
remain in Ωt,ρ . Since D`V ∆pt,xq ď ´cph0pt,xqq on SCph0,µq, and since c P K , we
have D`V ∆pt,xq ď ´cph0pt,xqq ď ´cpµq ” ´K over the set SCph0,µq X Sph,rq, which
contains Ωt,ρ ´ Ωt,η . Therefore, we have V pt,xptqq´V pt0,xpt0qq

t´t0
ď ´K, hence V pt,xptqq ď

V pt0,xpt0qq ´ Kpt ´ t0q ď ρ ´ Kpt ´ t0q, which shows that V pt,xptqq reduces to η within
rt0, t0 `

ρ´η

k s. This tells us that trajectories entered Ωt,ρ will enter Ωt,η at, say, t0 ` T ,
which satisfies t0 ` T ď t0 `

ρ´η

k , t0 ` T P T.
For solutions entered Ωt,η , since Ωt,η Ă Sph,α´1

1 pηqq, we have that @t ě t0 `T , hpt,xptqq ď

α
´1
1 pηq “ α

´1
1 pα2pµqq. For solutions inside Ωt,ρ but outside Ωt,η , aka @t P rt0, t0 ` T s,

D`V ∆pt,xptqq ď ´cph0pt,xptqqq ď ´cpα
´1
2 pV pt,xptqqqq ” ´αpV pt,xptqqq, α P K , which

corresponds to the ode y∆ “ ´αpyq,ypt0q “ V pt0,xpt0qq. By Theorem.5.0.2, V pt,xptqq ď

yptq,@t ě t0, t P T. By Lemma.5.0.1, we have that there exists Σpy0, t ´t0q P K L such that
yptq “ Σpy0, t ´ t0q. Therefore, there exists Σ P K L such that V pt,xpxqq ď Σpy0, t ´ t0q.
Since y0 “ V pt0,xpt0qq ď α2ph0pt0,xpt0qqq and α1phpt,xptqq ď V pt,xq, we have that

hpt,xq ď α
´1
1 pV pt,xqq ď α

´1
1 pΣpy0, t ´ t0qq (95)

ď α
´1
1 pΣpα2ph0pt0,xpt0qqq, t ´ t0qq “ σph0pt0,xpt0qq, t ´ t0q (96)

where σ P K L . Hence, we have there exists β P K L and T ą 0, t0 ` T P T such that

hpt,xptqq ď β ph0pt0,x0q, t ´ t0q,@t0 ď t ď t0 ` T (97)

hpt,xptqq ď α
´1
1 pα2pµqq,@t ě t0 ` T (98)

If α1 P K8, therefore α2 P K8. If we also know that D “ Rn, for any arbitrary µ and
h0pt0,x0q given, r for Br can be chosen arbitrarily large, making sure that µ ă α

´1
2 pα1prqq

and h0pt0,xpt0qq ď α
´1
2 pα1prqq, and the proof will go exactly the same as above.
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With Theorem.5.0.4 proven, the ISS on time scale can be easily formulated based on the
continuous time case:

Theorem 5.0.5. Suppose h,h0 P Γ. Let D Ă Rn be a domain contains the equilibrium
of interest and V : T ˆ D Ñ R is continuous, locally Lipschitz in x, and there exists
α1,α2,c,ρ P K such that

α1phpt,xptqqq ď V pt,xq ď α2ph0pt,xptqqq (99)

D`V ∆
pt,xptqq ď ´cph0pt,xqq, on SC

ph0,ρp∥u∥qq (100)

Moreover, cpα
´1
2 puqqµ˚ptq ` u is nondecreasing in u @t P T and rptq “ rpt, t0,u0q is the

maximal solution of u∆ “ cpα
´1
2 puqq,upt0q “ u0 existing on T. Then, Eq.53 is ph0,hq´input-

to-state stable with γ “ α
´1
1 ˝ α2 ˝ ρ .

6 Conclusion
In this project, we extend the notion of ISS to systems in terms of two measures, which
generalized ISS to include many different scenarios such as partial stability and much more.
Utilizing time-scale calculus and measure chain theory, we also develop the time-scale
counterpart of this extension, which is more applicable to real-life systems. Future research
regarding the extension of stability analysis to systems in terms of two measures will
enhance the applicability and generality of stability analysis.
ISS in terms of two measures can potentially be applied to event-triggered control systems.
Consider the control system on an arbitrary time scale T with bounded graininess function:

z∆
“ εpzptq,uptqq,zpt0q “ z0,@t P T (101)

where ε is rd-continuous and the control input uptq is only updated at the discrete time
instant ti P T, i P N, i.e., when the triggering event happens. [2] gives a triggering mecha-
nism with Euclidean norm to maintain the ISS of the system, but they might have used
the comparison lemma incorrectly. Moreover, we can potentially extend the triggering
mechanism to the two-measure case, and discuss the restrictions on the measures to avoid
Zeno behaviour.

Bibliography
[1] M. Bohner and A. Peterson. Dynamic Equations on Time Scales: An Introduction with

Applications. Birkhäuser Boston, 2012.

[2] Subham Dey, Michael Defoort, Mohamed Djemai, and Stefano Di Gennaro.
Event–triggered control for systems on non–uniform time domains using measure chain
theory. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3):1198–
1202, 2022.

[3] Hassan K. Khalil. Nonlinear systems. Prentice Hall, Upper Saddle River, NJ, 3rd ed.
edition, 2002.



21

[4] V. Lakshmikantham. Dynamic systems on measure chains. Mathematics and its
applications ; v. 370. Kluwer Academic Publishers, Dordrecht ;, 1996.

[5] V Lakshmikantham and X Z Liu. Stability Analysis in Terms of Two Measures.
WORLD SCIENTIFIC, 1993.


	Introduction
	Lyapunov analysis of nonlinear systems
	Premilinaries
	Autonomous system
	Nonautonomous system
	Boundedness
	Input-to-State Stability (ISS)

	Stability in terms of two measures
	ISS in terms of two measures
	ISS of Dynamic systems on time scales in terms of two measures
	Conclusion
	Bibliography

